
Journal of Computational Physics154,1–40 (1999)

Article ID jcph.1999.6290, available online at http://www.idealibrary.com on

Iterative Linear Solvers in a 2D
Radiation–Hydrodynamics Code:

Methods and Performance1

Chuck Baldwin,∗ Peter N. Brown,∗ Robert Falgout,∗ Frank Graziani,† and Jim Jones∗
Center for Applied Scientific Computing, L-561, Lawrence Livermore National Laboratory, Livermore,

California 94550; and†Low Energy Density Physics, L-170, Lawrence Livermore National
Laboratory, Livermore, California 94550

Received November 19, 1998; revised May 6, 1999

Computer codes containing both hydrodynamics and radiation play a central role
in simulating both astrophysical and inertial confinement fusion (ICF) phenomena.
A crucial aspect of these codes is that they require an implicit solution of the radiation
diffusion equations. We present in this paper the results of a comparison of five dif-
ferent linear solvers on a range of complex radiation and radiation–hydrodynamics
problems. The linear solvers used are diagonally scaled conjugate gradient, GMRES
with incomplete LU preconditioning, conjugate gradient with incomplete Cholesky
preconditioning, multigrid, and multigrid-preconditioned conjugate gradient. These
problems involve shock propagation, opacities varying over 5–6 orders of magni-
tude, tabular equations of state, and dynamic ALE (Arbitrary Lagrangian Eulerian)
meshes. We perform a problem size scalability study by comparing linear solver
performance over a wide range of problem sizes from 1000 to 100,000 zones. The
fundamental question we address in this paper is: Is it more efficient to invert the
matrix in many inexpensive steps (like diagonally scaled conjugate gradient) or in
fewer expensive steps (like multigrid)? In addition, what is the answer to this ques-
tion as a function of problem size and is the answer problem dependent? We find that
the diagonally scaled conjugate gradient method performs poorly with the growth of
problem size, increasing in both iteration count and overall CPU time with the size of
the problem and also increasing for larger time steps. For all problems considered, the
multigrid algorithms scale almost perfectly (i.e., the iteration count is approximately
independent of problem size and problem time step). For pure radiation flow prob-
lems (i.e., no hydrodynamics), we see speedups in CPU time of factors of≈15–30
for the largest problems, when comparing the multigrid solvers relative to diago-
nal scaled conjugate gradient. For the incomplete factorization preconditioners, we
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see a weak dependence of iteration count on problem size. The speedups observed
for pure radiation flow are typically on the order of 10 relative to diagonal scaled
conjugate gradient. For radiation–hydrodynamics problems, we again see multigrid
scaling perfectly. However, for the problems considered, we see speedups relative to
diagonal scaled conjugate gradient of no more than≈10, with incomplete Cholesky
in fact either equaling or outperforming multigrid. We trace these observations to the
time step control and the feature of ALE to relax distorted zones.c© 1999 Academic Press

Key Words:radiation diffusion; iterative methods; multigrid; incomplete factor-
ization.

1. INTRODUCTION

Computer codes containing both hydrodynamics and radiation play a central role in sim-
ulating both astrophysical and inertial confinement fusion (ICF) phenomena [1, 2]. With
increasing experimental data coming from observational astronomy [3] and laser experi-
ments [4], there is a need for performing spatially and temporally resolved numerical cal-
culations of such physical processes as convective instabilities in a supernova or radiatively
driven Richtmeyer–Meshov instabilities in an ICF capsule. These problems require accu-
rately simulating not only fluid motion (including shock propagation) but also the transport
of radiation energy density in both optically thick and thin materials in as computationally
expedient a method as possible.

Typically, a multiphysics code also means multiple time scales, and radiation–hydro-
dynamics (RHD) codes are no exception. For problems of interest in this paper, namely
radiation transport coupled to shock propagation, the hydrodynamic time scale is determined
by the speed of sound and a “zone width,” and the radiation time scale is determined by
1/(κρc), whereκ is the frequency-dependent opacity,ρ is the material density, andc is
the speed of light. The need to know transient shock behavior implies that an explicit
formulation of the hydrodynamics equations is required. An RHD code can certainly run
at the smallest time step as determined by the radiation Courant condition

c1t

κρ1x2
<

1

2
,

where1t is the time step and1x is the zone width, but this can be extremely inefficient,
causing the code to have to run millions of cycles in order to capture a radiatively driven
implosion. The other option is to run at the largest time step possible within the limits of
stability and accuracy. This means running at time steps much larger than the time step
demanded by the radiation Courant condition. Therefore, it is imperative from a stability
standpoint that the radiation be run implicitly. It is this fact that necessitates the use of
matrix solvers.

Performing spatially resolved numerical calculations of an ICF implosion can require
hundreds of thousands to millions of zones in 2D and millions to tens of millions of zones
in 3D. In addition, astrophysical and ICF applications can give rise to a wide range of
density and temperature scales coupled to complicated flows that imply a highly anisotropic
distribution of opacities covering a wide range of values (typically five orders of magnitude
across an interface). Consequently, the matrices that need to be inverted in a real world
application of an RHD code not only are extremely large, but are difficult to invert due
primarily to the wide range in values of the matrix entries. The purpose of this paper is to
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compare and contrast the performances of five linear iterative solvers over a wide range
of RHD problems which cover a wide range of zone counts. Typically, we will consider
small (≈1000 zones), medium (≈10,000 zones), and large (≈100,000 zones) problems.
The results presented in this paper are for a DEC-Alpha computer. All calculations are
run serially although comments are made concerning future work on multiple processor
platforms.

The five linear solvers chosen are:

1. diagonally scaled preconditioned conjugate gradient (DSCG) [15],
2. generalized minimal residual method with incomplete LU thresholding precondition-

ing (ILUT+GMRES) [15],
3. conjugate gradient method with incomplete Cholesky thresholding preconditioning

(ICT+CG) [5],
4. semicoarsening multigrid (SMG) method [16], and
5. semicoarsening multigrid preconditioned conjugate gradient method (SMG+CG) [16].

The motivation for choosing these five algorithms was based in part on the recent research
interests of the collaborators in the area of interative solvers. As incomplete factorization
and multigrid methods have been successfully used in many other problem areas, we felt it
reasonable to focus on these types of methods. Certainly, other methods such as approximate
inverse solvers would also be interesting to pursue.

The accuracy and stability of the code are enforced via time step controls which cause
the time step to evolve as a function of time in a complicated fashion. This implies that the
linear solvers are presented at each time step with a changing matrix that might or might not
be diagonally dominant. Hence, there is an intimate connection between time step behavior
and linear solver performance. We perform a problem size scalability study by comparing
linear solver performance over a wide range of problem sizes. The fundamental question
we address in this paper is: Is it more efficient to invert the matrix in many inexpensive steps
(like diagonally scaled conjugate gradient) or in fewer expensive steps (like multigrid)? In
addition, what is the answer to this question as a function of problem size and is the answer
problem dependent?

The focus of this paper is scalability of algorithms. In the current parlance, the word
scalable usually refers to the number of processors. However, our definition is more general.
A code is scalable if it can effectively use additional computational resources to solve
larger problems. More precisely, the total work, storage, and communication per process
should not depend on overall problem size. As such, a specific factor that contributes to
iterative numerical scalability is the convergence rates of iterative linear solvers. We stress
that linear solver convergence can be discussed independent of parallel computing and is
often overlooked as a key scalability issue. The scalability problem of linear iterative solvers
should be analyzed in a multidimensional space where one degree of freedom is the problem
size and the other degree of freedom is the number of processors. The purpose of this paper
is to present results of the first phase of a two phase project, that is, solver performance as
a function of problem size. In a subsequent publication, we will present results of solver
performance as a function of the number of processors for a given problem size and extend
the results to 3D.

The rest of the paper is organized as follows. In Section 2, we give an overview of the
radiation–hydrodynamics equations and code that we use in our testing, and then briefly
describe the underlying discretization methods in the code. In Section 3, we discuss the
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above linear iterative methods. In Section 4, we present the suite of test problems, and in
Section 5 we present our numerical results. Finally, a summary discussion is presented in
Section 6.

2. THE RADIATION–HYDRODYNAMICS CODE

2.1. Physics

2.1.1. Hydrodynamics.We assume a nonrelativistic formulation of hydrodynamics
whose governing equations are given by

∂ρ

∂t
+∇ · (ρu) = 0 (1)

∂

∂t
(ρu+ Pr)+∇ · (ρuu+8r)+∇ p = 0 (2)

∂

∂t

(
1

2
ρu2+ Em+ Er

)
+∇ ·

[(
1

2
ρu2+ Em+ p

)
u+ Fr

]
= 0. (3)

In these equations,

ρ = fluid density,

u = fluid velocity,

p = fluid pressure,

Em = fluid internal energy density,

Pr = radiation momentum density,

8r = radiation momentum flux tensor,

Er = radiation energy density, and

Fr = radiation energy flux.

In general,Fr= c2Pr. The radiation quantities appearing in the fluid dynamics equations
will be defined in the next section within the context of diffusion theory.

2.1.2. Radiation. The RHD code we use in this study models the radiation transport
as multigroup diffusion with flux limiting [14, 13]. Multigroup diffusion is an isotropic
approximation to the radiation transport equation. There is no assumption made concern-
ing the distribution of photons in frequency, only that the radiation field is approximately
isotropic in space. Causality is enforced via the Wilson flux limiter [14, 13]. In addition,
we assume local thermodynamic equilibrium so that the emission function is simply pro-
portional to the Planck function (Kirchoff’s law) [14, 13]. We also assume that the electrons
and ions carry their own temperatures. Implicit in this assumption is that locally, the elec-
trons and ions can be represented by Fermi–Dirac and Maxwell–Boltzmann distributions,
respectively. We allow for both electron and ion conduction by using the form due to Lee
and More [11], which incorporates both degeneracy and partial ionization effects. For this
study, however, we have turned off electron and ion conduction. The electrons and ions are
coupled together through the Brysk–Spitzer coupling [6], which describes the rate of energy
transfer between Maxwellian distributions of particles (allowing for a partial degeneracy
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of the electron gas). The electrons themselves are coupled to the radiation field through the
opacity which is corrected for stimulated emission. We use tabular forms for the opacity
which come from the code XSNQ [12]. This code uses an average atom approximation
to compute bound–bound, bound–free, and free–free contributions to the opacity coming
from line absorption, photoionization, and inverse brehmstrahlung. We do not include the
effects of Compton scattering. The governing equations are

1

c

∂εν

∂t
= ∇ ·

(
1

3σν
∇εν

)
+ σν(Bν(Te)− εν) (4)

∂

∂t

(
ρCVeTe

) = ∇ · [De∇Te] + ρCVeÄie(Ti − Te)−
∫ ∞

0
σν(Bν(Te)− εν) dν (5)

∂

∂t

(
ρCVi Ti

) = ∇ · [Di∇Ti ] − ρCViÄie(Ti − Te). (6)

In these equations

εν = radiation spectrum,

Te = electron temperature,

Ti = ion temperature,

σν = κνρ= absorption inverse mean free path corrected for stimulated emission,

De = electron conduction coefficient,

Di = ion conduction coefficient,

CVe = electron heat capacity,

CVi = ion heat capacity,

ρ = material density,

Äie = Brysk–Spitzer electron–ion coupling coefficient, and

Bν(Te) = (8πhν3/c3)(ehν/kT − 1)−1 = Planck function.

The material motion and radiation transport are coupled viaPr, 8r, Er, andFr. In the
diffusion approximation, the radiation energy densityEr is simply

∫∞
0 εν dν, which defines

the radiation temperature sinceEr=aT4
r (a is the radiation density constant). The radiation

momentum flux tensor is diagonal and is proportional to one-third of the radiation energy
density. The radiation energy flux is related to the spectrum via Fick’s law and is a direct
consequence of the near isotropy of the radiation. For specific details regarding radiation
transport and the diffusion approximation, we reference the works of Pomraning [14] and
Mihalas and Weibel-Mihalas [13].

2.2. Numerical Solution Procedures

2.2.1. Hydrodynamics.The RHD system (1)–(6) is solved on an ALE (Arbitrary
Lagrangian Eulerian) mesh [1]. ALE is a technique that makes use of the ability of
Lagrangian methods to let zones track material motion and at the same time avoid the
mesh entanglements that Lagrangian codes inevitably get into by allowing the mesh to
relax once a zone becomes too distorted. The latter step is called remap. We refer the
interested reader to papers in [1] for the details of ALE hydrodynamics. The zones that
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make up the mesh always remain quadrilateral in 2D or hexahedral in 3D. Hence, the
mesh is structured and logically rectangular. In addition, unlike AMR (adaptive mesh re-
finement) the number of zones in the problem remains fixed in time. The solution scheme
is predictor–corrector and is fully second order accurate in space and time. There is a
monotonic artificial viscosity (Q) [2]. The hydrodynamics step is governed by an explicit
time step control determined by the sound speed and the zone size. The hydrodynam-
ics is operator split from the radiation and is solved for first in any given cycle. In any
given cycle, the hydrodynamic and radiation steps are performed only once. This implies
that the coupled RHD problem can only be first order accurate in time. Figures 27–30
show a typical time snapshot sequence of an ALE mesh created during a radiatively driven
implosion.

The radiation equations (4)–(6) are solved on the hydrodynamic grid. It is this fact and
the fact that ALE relaxes a mesh that becomes too distorted that implies that ALE has an
effect on the matrix solvers themselves. We will comment on this observation in subsequent
sections.

2.2.2. Radiation. The multigroup radiation equations are solved via the partial tem-
perature method [2]. A linear continuous finite element representation based on triangular
elements is used for the “div–grad” operator [8, 18]. In 2D this means that we have a 9-point
stencil while in 3D the stencil is 27. Integrating the “div–grad” over the volume of thej th
zone yields∫

jth zone

(
∇ ·
(

1

3σν
∇εν

))
dV

= −a1, j+1[εν, j+1− εν, j ] + a1, j [εν, j − εν, j−1] − b0, j+s[εν, j+s − εν, j ]
+ b0, j [εν, j − εν, j−s] − b1, j+s+1[εν, j+s+1− εν, j ] + b1, j [εν, j − εν, j−s−1]

+ bm1, j+1[εν, j−s+1− εν, j ] + bm1, j+s[εν, j − εν, j+s−1]. (7)

The terms in Eq. (7) represent eight fluxes: four for the face fluxes (proportional toa1 and
b0) and four for the fluxes at the corners (proportional tob1 andbm1). The latter fluxes
go to zero in the limit of an orthogonal mesh. In addition, the spectrumεν is evaluated
at the new time step. Solving the radiation equations on an ALE mesh which is logically
rectangular but nonorthogonal in terms of physical space yields a matrix which has a simple
striped structure. In Figs. 1 and 2, we show the generic form of the matrix generated by the
radiation equation on a 2D ALE mesh and the corresponding zonal couplings of Eq. (7)
generated by the finite element representation of the “div–grad” operator. Flux conserva-
tion implies that the matrix is symmetric. In addition, the matrix is also positive definite.
Besides containing incoming and outgoing flux information, the main diagonal contains
information regarding local coupling physics and the old time step radiation spectrum.
These terms are order 1+O(1t). Couplings to neighboring zones are represented in the
matrix by the off-diagonal terms and come from incoming and outgoing fluxes. The mag-
nitude of the corner coupling terms is proportional toD1t cos(θ), whereD is the diffu-
sion coefficient across the node,1t is the time step, andθ is the angle between thex
and y axes of the zone. Note that ifθ = 90◦, the corner coupling goes to zero and the
9-point stencil reduces to 5-point. In this case, the matrix structure simplifies considerably,
with the matrix consisting of nonzero entries on the main diagonal, directly above and
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FIG. 1. Generic matrix nonzero pattern.

below the main diagonal, and nonzero entries one stride length away also forming diag-
onals. Once the mesh becomes nonorthogonal, nonzero entries start appearing above and
below the diagonals that are one stride length away from the main diagonal. Running pure
radiation problems implies for our code a fixed mesh. However, running hydrodynamics
implies ALE and the subsequent relaxation of distorted zones. This implies for radiation
that the corner couplings which appear above and below the diagonals that appear one stride
length away from the main diagonal can be relatively small compared to diagonal entries.

Equations (4)–(6) are solved implicitly with the understanding that the opacity, conduc-
tion coefficients, heat capacity, and electron–ion coupling are evaluated at the start of the
radiation step and hence contain only updated information coming from the hydrodynamics
step. In addition, the Planck function is linearized about the old time stamp value for the

FIG. 2. Generic zonal couplings.
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electron temperature. All the coupled radiation, electron, and ion equations are operator split
from each other and are therefore solved in several steps. These are outlined as follows:

1. Solve the radiation diffusion, 1/3 of the electron–ion coupling, and all of the radiation–
electron coupling.

2. Solve another 1/3 of the electron–ion coupling.
3. Solve the electron conduction and the remaining 1/3 of the electron-ion coupling.
4. Solve the ion conduction.

2.2.3. Time step controls.The stability of the hydrodynamics demands a Courant con-
dition based on the sound speed and zone size. Accuracy on the other hand restricts the
time step for the radiation. Since the radiation solver step is split from the hydrodynamic
solution step, the solution to a coupled RHD problem is only first order accurate in time. In
addition, the Planck function is linearized about the old electron temperature, the various
couplings between the photon, electron, and ion fields are operator split, and quantities
such as the specific heat use old time stamp values all leading to inaccuracies if the time
step is too large. For these reasons the code restricts the fractional change in the radiation
temperature in any given zone to be less than 20%. By running analytic test problems, we
have found that this restriction yields reasonable accuracy. The splitting of the hydrody-
namic and radiation steps also means that it is important to limit the impact of a particular
physics package on any other package. For this reason we introduce a limit on the radia-
tion acceleration. Radiation acceleration arises due to the transfer of momentum from the
photons to the fluid, which in turn induces a force or acceleration on the fluid. In diffusion,
this acceleration is essentially simply the gradient of the radiation pressure. Hence the time
step

1t ≈
√

ρ

radiation pressure
× zone size

defines a causality condition whereby the signal produced by the radiation pressure accel-
erating the fluid cannot exceed an effective sound speed given by the square root of the
radiation pressure/ρ.

At this point we have several time scale restrictions governing the accuracy and stability
of the code. A single time step governs both the radiation and the hydrodynamic packages
and it evolves dynamically from some initial value. The choice of the initial value is problem
dependent and depends on the material properties and geometry of the system under study.
A general rule of thumb is that for problems involving optically thick materials an initial
time step of1t = 10−4µs works well, while for optically thin materials an initial time
step of1t = 10−8µs is needed. A point worth mentioning is that the RHD code used in
this paper is postdictive, in the sense that if any one of a series of time step restrictions is
violated the code only decreases the time step on the following cycle and not the current
cycle. Consequently, if any given time step satisfies the controls listed, then the time step is
allowed to increase by a factor of 1.2 in the next cycle. If, however, the time step violates any
of the restrictions (i.e., Courant,1Tr/Tr≤ 0.2, or radiation acceleration) the code operates
on the next cycle at a time step dictated by the largest of the three controls.

The time step control, as we will see, has a bearing on the efficiency at which a parti-
cular solver can invert the matrix. Hence, there is an intimate connection between solver
convergence rates and evolving time step values.
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3. ITERATIVE LINEAR SOLVERS WITH PRECONDITIONING

3.1. Diagonally Scaled Conjugate Gradient

The first preconditioned iterative method we consider is the diagonally scaled conjugate
gradient method (DSCG). By this we mean the preconditioner for the conjugate gradient
method is simply the inverse of the main diagonal of the matrix. This has the virtue of ease
of coding, and for the time-dependent simulations of interest works quite well when the
time step size is very small. This follows since the matrixA has the formA= I −1t J,
whereJ is the discretized spatial differential operator. For very small1t , A is diagonally
dominant, and so the inverse of its main diagonal should be a good approximate inverse.
However, the performance of DSCG is highly dependent on the problem size, degrading
quickly as the size increases.

3.2. Incomplete Factorizations as Preconditioners

The use of incomplete factorizations as a technique for generating preconditioners has
been extensive in the literature. We refer the reader to the excellent book by Saad [15] for a
comprehensive development of these techniques. The major advantage of using incomplete
factorizations as preconditioners is their easy application to a variety of problems. These
techniques only require a matrix; no specific knowledge of the problem under considera-
tion is required, unlike the case with structured multigrid methods. However, the standard
approaches to using these methods typically do not scale well with problem size, and our
numerical results below demonstrate this. For comparison purposes, we consider two in-
complete factorization methods, both developed by Saad and his co-workers. Specifically,
we use ILUT (Saad [15]) and a modified version of ILUT designed for symmetric positive
definite problems, called ICT. We only briefly describe these techniques, and refer the reader
to the above references for more detail on ILUT, and a recent report describing ICT [5].

3.2.1. ILUT. The ILUT algorithm was conceived as a combination of two earlier tech-
niques, one being alevel-of-fillconcept and the other athreshold dropping tolerance. Both
techniques were effective by themselves on certain classes of problems, but were plagued
with inherent difficulties. The level-of-fill concept did not take into account actual numerical
values in the matrix, and hence could perform poorly on some problems where fill-in was
important, while with the drop-tolerance approach it was difficult to estimate the needed
storage and work to accomplish the factorization. ILUT was the first incompleteLU al-
gorithm to successfully combine the two approaches. The following basic approach is as
follows:

GENERIC INCOMPLETELU FACTORIZATION WITH THRESHOLDING, ILUT(lfil, droptol)

0 row(1:n) = 0, U(1,1:n)=A(1,1:n)

1 do i = 2,n

2 row(1:n) = A(i,1:n)

3 do k = 1,i-1 (and where row(k) .ne. 0)

4 row(k) := row(k) / U(k,k)

5 apply a dropping rule to row(k)

6 if (row(k) .ne. 0) then

7 row(k+1:n)=row(k+1:n)-row(k)*U(k,k+1:n)

8 endif
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9 apply a dropping rule to row(1:n)

10 enddo

11 L(i,1:i-1) = row(1:i-1)

12 U(i,i:n) = row(i:n)

13 row(1:n) = 0

14 enddo

The dropping rules in lines 5 and 9 are based on an input relative tolerancedroptol and a
sparsity dropping tolerancelfil. In ILUT(lfil,droptol), the following rules are used:

• In line 5, if |row(k)| ≤̇ τi ≡ droptol · 2-norm of rowi , then row(k) := 0.
• In line 9, first any element in the row with magnitude less thanτi is dropped. Then

only thelfil largest elements in theL part of the row and thelfil largest elements in the
U part of the row are kept, plus the diagonal element.

The second step controls the number of elements per row. Note that no pivoting is performed.
An ILUTP variant performs pivoting. The advantages of ILUT over earlier ILU techniques
are two-fold:

• Taking droptol= 0 andlfil= n gives an exact sparse LU factorization with no
pivoting. Thus, the user can control the quality of the preconditioner.
• The user can determine how much storage is needed beforehand.

Since ILUT is formulated for nonsymmetric matrices, we use ILUT as a preconditioner for
the Generalized Minimal Residual (GMRES) linear iterative method.

3.2.2. ICT. For symmetric positive definite (SPD) problems, ILUT is too costly, in
terms of both the storage and the computational work involved. Generally, the Cholesky
factorization for SPD matrices is used as the basis for generating a preconditioner based
on incomplete factorization. The ICT algorithm is based on anL DLT decomposition of an
SPD matrixA. Briefly, consider the sequence of matrices

Ak+1 =
(

Ak wk+1

wT
k+1 αk+1

)
,

whereAn= A. If Ak is nonsingular and itsL DLT factorization

Ak = Lk DkLT
k

is already available, then theL DLT factorization ofAk+1 is

Ak+1 =
(

Lk 0

yT
k+1 1

)(
Dk 0

0 dk+1

)(
LT

k yk+1

0 1

)
,

in which

yk+1 = D−1
k L−1

k wk+1

dk+1 = αk+1− yT
k+1Dkyk+1.

Hence, the last row and column of the factorization can be obtained by solving a one
unit lower triangular system and computing a scaled dot product. The ICT incomplete
factorization based on this factorization is given as follows:
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GENERICINCOMPLETEL DLT FACTORIZATION WITH THRESHOLDING, ICT(lfil, droptol)

0 D(1,1) = A(1,1), L(1,1) = 1;

1 do k = 2,n

2 row = A(k,1:k-1)

3 do i = 1,k-1 (and where row(i) .ne. 0)

4 if (abs(row(i)/D(i,i)) .le. droptol) row(i) = 0

5 if (row(i) .ne. 0) then

6 do j = i+1,k-1

7 row(j) = row(j) - row(i)*L(j,i)

8 enddo

9 row(i) = row(i) / D(i,i)

10 endif

11 enddo

12 drop all but the lfil largest elements in row

13 D(k,k) = A(k,k) - row*D(1:k-1,1:k-1)*row’

14 L(k,1:k-1) = row

15 L(k,k) = 1

16 enddo

(Note that in the algorithm,row representsyT
k+1.) If A is SPD, then the diagonal matrixD has

all positive entries in itsL DLT factorization. For the incomplete factorization, this may no
longer be true, and likely signals a poor approximation to the original matrix. In the testing
described below, we use the ICT algorithm as a preconditioner in a PCG (Preconditioned
Conjugate Gradient) linear iteration.

3.2.3. Ordering strategies.When incomplete factorization techniques are used to gen-
erate preconditioners, the ordering of the rows and columns of the matrix can have a dramatic
effect on the amount of fill-in that occurs. For direct solvers, some version of the minimum
degree algorithm is a good generic choice for a reordering strategy as it produces the least
amount of fill-in. However, a reordering strategy that generates the most effective precon-
ditioner based on an incomplete factorization typically is not the one with the least fill-in.
Some strategy based on minimizing the bandwidth, such as the reverse Cuthill–McKee
(RCM) reordering strategy, often generates more effective preconditioners. This fact is not
well understood, and has been the subject of much research [15]. We use the RCM reorder-
ing algorithm in all of the problems considered below, as it is crucial for good performance
on the larger test problems.

3.3. Multigrid Solvers and Preconditioners

Multigrid methods can be very efficient solvers for the linear systems arising from dis-
cretized elliptic partial differential equations. Multigrid’s chief advantage is that it is a
scalable algorithm in that, when properly designed, the solver’s convergence rate is inde-
pendent of the size of the discretized system. Standard multigrid methods combine simple
relaxation (which quickly reduces high-frequency error components) with error correc-
tion from a coarser grid (which can accurately represent low-frequency error components).
For our problem, the multigrid solver must be able to efficiently deal with anisotropies
and widely variable coefficients. The semicoarsening algorithm used is based on the work
by Schaffer [16] (see also [7, 17]), and we will briefly discuss this particular multigrid
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algorithm. We focus on the 2D algorithm (commenting on the 3D extension) and on those
features that differentiate it from standard multigrid methods. For more general multigrid
references, see [3, 4, 9, 19]. For current information on the multigrid field, including an
extensive bibliography, a repository of papers and codes, and current events, access the
World Wide Web server MGNet at http://casper.cs.yale.edu/mgnet/www/mgnet.html.

3.3.1. SMG: Semicoarsening multigrid.Let AU= F be the given linear system to
solve, where the unknownU and right-hand-sideF are vectors defined on a logically
rectangular grid. We will use anh superscript to denote quantities defined on the given grid.
The matrixA is symmetric, positive definite and connections have the standard “nearest-
neighbor” 9-point stencil form. The multigrid algorithm of Schaffer uses a combination of
semicoarsening, line-relaxation, and operator-based interpolation. The resulting algorithm
is efficient and robust with respect to anisotropic and widely variable coefficients in the
matrix A.

As the grid is logically rectangular, there is a unique index(i, j ) for each point on the
grid, and the grid can be given a “red/black” line coloring. All unknowns{(i, j ), j odd} are
considered “red” and will be used for the coarse grid. We will use a 2h superscript to denote
quantities defined on the coarse grid. This is called semicoarsening (as opposed to full or
standard coarsening) as the coarse grid is only coarser in one of the dimensions. Red/black
line relaxation involves updating the solution at all red lines to satisfy their equations (a
tridiagonal solve for each red line) followed by a similar update for the black lines. Because
of the 9-point stencil, there is no dependence between lines of the same color and they could
be updated in parallel.

An important, unique feature of the SMG algorithm is the definition of the interpolation
operator I h

2h used to transfer an error correction from the coarse to the fine grid. The
definition is motivated by the relationship between errors on red and black lines after a
black line relaxation sweep. To briefly describe the approach, let

AJ,J−1UJ−1+ AJ,JUJ + AJ,J+1UJ+1 = FJ (8)

be the equations for theJth line. HereUJ = (Ui,J, i = 1, . . . ,nx) and similarly forUJ± 1.
After this line is relaxed, the error equation is

AJ,J−1eJ−1+ AJ,JeJ + AJ,J+1eJ+1 = 0, (9)

so

eJ = −A−1
J,J AJ,J−1eJ−1− A−1

J,J AJ,J+1eJ+1. (10)

After black line relaxation this relationship describes how the error at black lines is re-
lated to the error at red (coarse) lines; it gives the “ideal” interpolation formula. However,
using Eq. (10) leads to nonsparse interpolation operators. In the SMG algorithm, sparse
approximations to these ideal interpolation operators are used. The matrices−A−1

J,J AJ,J−1

and−A−1
J,J AJ,J+1 are approximated by diagonal matrices with the same action on constant

vectors. The computation of these interpolation operators involves a tridiagonal solve for
each black grid line.

With this definition for the interpolation operatorI h
2h, its transpose is used for the restric-

tion operatorI 2h
h (used in transferring residuals from the fine to the coarse grid), and the



LINEAR SOLVER COMPARISON 13

coarse grid versions ofA are defined by the Galerkin condition, i.e.,A2h= I 2h
h Ah I h

2h. These
components are then used in a standard multigridV-cycle as outlined below.

V(ν1, ν2)-CYCLE

1. Pre-relaxation onAhUh = Fh. Performν1 sweeps of red/black line relaxation.
2. SetF2h = I 2h

h (F
h − AhUh).

3. “Solve” A2hU2h = F2h by recursion.
4. CorrectUh ← Uh + I h

2hU2h.
5. Post-relaxation onAhUh = Fh. Performν2 sweeps of black/red line relaxation.

The equation to be solved in step 3 has the same form as that of the original gridh problem.
It is solved by applying the same algorithm using a still coarser grid 4h. Eventually, a coarse
grid is reached that has a single grid line and line relaxation is a direct solver.

3.3.2. SMG+CG: Multigrid as a preconditioner.As will be shown in the numerical
results, the SMG algorithm alone can be an efficient solver for our linear systems. However,
using it as a preconditioner in a PCG (Preconditioned Conjugate Gradient) iteration is
generally a more robust strategy and, depending on the problem, can be more efficient as
well. In the preconditioning step of PCG we apply a singleV-cycle of SMG, and theV-
cycle must be constructed so as to yield a symmetric preconditioner. Reference [10] provides
conditions that guarantee symmetry of a multigridV-cycle, and the SMG algorithm meets
these provided that the number of pre-relaxations,ν1, is equal to the number of post-
relaxations,ν2.

In all our numerical tests, the SMG runs used aV(1, 0)-cycle and the SMG+CG runs used
aV(1, 1)-cycle as the preconditioner. TheV(1, 0)-cycle is generally the most efficient stand-
alone solver, so the SMG+CG carries the computational overhead of the PCG algorithm
plus the additional relaxation sweeps needed to guarantee symmetry. In comparing the
SMG+CG runs to the runs using SMG alone, we found that SMG+CG runs have greater
computational work per iteration, but require fewer iterations.

4. THE MULTI-PHYSICS TEST SUITE

The purpose of the multiphysics test suite is to present to the code, and in particular to
the linear solvers, a wide spectrum of problems. In this way, an accurate and fair assessment
of the speed of the solvers can be made. The first part of the test suite covers radiation flow
alone without the effects of hydrodynamic motion. The second part tests radiation flow in the
presence of material motion. Two test problems that fit into the pure radiation flow category
are (1) radiation flow on a highly distorted mesh in 2D (Kershaw mesh problem; see Fig. 3),
and (2) radiation flow in a spherical geometry (see Fig. 11). In both cases, the lack of material
motion means that the mesh is fixed in time. The last two problems run in the suite test the
RHD capabilities of the code. More importantly, from the standpoint of this paper, it tests
the linear solvers on a mesh that is changing with time. Because of the complicated mesh
pattern that arises from shocks and ordinary material motion, the time step is a complicated
function of time. The test suite is intended to test the ability of the linear solvers to solve the
radiation equations on a dynamically changing mesh with a time step control determined
by both hydrodynamic and radiative processes. The net result as far as the linear solvers
are concerned is that the matrix itself is changing both in the values of its elements and in
its structure. The solver performance tests presented in this paper are therefore more severe
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and realistic than test matrices, which are typically used to judge solver performance. We
do not wish to imply that our test suite is exhaustive, only that it presents, for what we
believe the first time, a realistic assessment of linear solver performance. Figures 3, 11, 19,
and 27 show the initial geometry and mesh for each of the problems in the test suite.

All problems presented here were run without electron or ion conduction. In addition, the
number of frequency groups was taken to be one. In this way, the statistics presented in this
paper are for only one matrix solve per cycle. The advantage of doing this is that the perfor-
mance figures for radiation diffusion are not confused with those of material conduction.
Although calculations without conduction or with one frequency group may not give the
best representation of reality, this is not the purpose of this paper. We are primarily interested
in linear solver performance in complex RHD flows. The importance however, of the linear
solver timing results presented here becomes magnified when a full multigroup calculation
involving, say, 50 groups is performed. For example, the results presented for CPU time
spent in the radiation package would be multiplied by approximately 50 times, thereby
dominating other physics packages such as hydrodynamics. This means that a slow ineffi-
cient solver becomes a tremendous sink of time in any multiphysics code since the solver
has to perform the inversion for each frequency group. This fact should be kept in mind.

4.1. Kershaw Problem

The problem consists of a slab of CH foam heated at one end with a constant temperature
source of 300 eV. The slab measures 4.0 cm in the vertical direction and 4.5 cm in the hori-
zontal direction. The CH foam is at a constant density of 1.05 g/cc. The mesh is shown
in Fig. 3. The small problems consists of 40× 50 zones, the medium 80× 100 zones, and
the large 320× 400 zones. The boundary conditions are reflecting at the right, top, and
bottom boundaries and open at the left boundary. The problem describes Marshak wave
propagation. The problem is run to 10−3µs.

4.2. Spherical Diffusion without Hydrodynamics

This problem consists of a ball of DT ice at a density of 0.25 g/cc at a radius of 0.04 cm,
a shell of CH foam at density 1.05 g/cc and a radius of 0.07 cm, a shell of sourced He at a
density of 0.0005 g/cc, a temperature of 300 eV, and a radius of 0.24 cm, and finally a shell
of Au at a density of 19.3 g/cc and a radius of 0.3 cm (see Fig. 11). This problem represents
an ICF capsule where the DT ice is the fuel, the CH foam is the ablator, and He is the
gas inside the Au hohlraum. The source temperature is set at 300 eV. This problem is run
without material motion and hence merely tests the diffusion of radiation on a fixed polar
geometry. The problem was run with 1000 zones (10 angular× 100 radial), 10,000 zones
(10 angular× 1000 radial), and 100,000 zones (100 angular× 1000 radial). The problem is
taken to be rotationally symmetric about thex axis and is run to 10−3µs.

4.3. Radiatively Driven Symmetric Implosion

This problem is identical in principle to the previous problem with hydrodynamics turned
on (see Fig. 19). This problem describes the ablation of the CH foam followed by the
subsequent implosion of the DT ice capsule. The DT capsule continues to implode with
corresponding increases in temperature and density until the shocks converge on the center
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and bounce, whereupon the DT capsule explodes. This problem was run on an initially
uniform rectilinear mesh in the small (30× 30 zones), medium (100× 100 zones), and
large (300× 300 zones) categories.

4.4. Radiatively Driven Asymmetric Implosion

This is a problem identical to the radiatively driven symmetric implosion except that
the DT ice capsule has been shimmed so that it is an ellipse (since this problem is also
rotationally symmetric about thex axis the capsule really is an ellipsoid). The major axis
is 0.06 cm while the minor axis is 0.04 cm (see Fig. 27). In this problem, the CH foam is
heated and ablates in an asymmetrical fashion. This causes an asymmetrical implosion of
the capsule. This problem was run with 1000 zones (10 angular× 100 radial), 10,000 zones
(100 angular× 100 radial), and 100,000 zones (100 angular× 1,000 radial). This problem
tests the linear solver performance on a mesh, though initially symmetric, becomes skewed
in time due to off center convergence of incoming shocks.

5. RESULTS

The Kershaw calculations were performed on a DEC-Alpha with a 300 Mhz Alpha chip
with 8 GB of main memory. The other problems were performed on a 625 Mhz DEC-Alpha
chip with 8 GB of main memory. Before a given result was considered satisfactory, we had
to make sure that a given problem run with a variety of linear solvers was giving identical
answers. In order to do this we compared time-dependent data at selected zones in a specific
problem and also the time step as a function of time for each solver. This method proved
useful in locating several bugs in the linear solvers. A given problem run on a variety of
linear solvers was not considered acceptable unless all time-dependent data for a given
problem size agreed to one part in 106.

For all of the runs using ILUT and ICT, we useddroptol= 0.0001 andlfil= 20.
Additionally, in all of the figures showing iteration and time step counts, the labels A, B, C,
D, and E refer to the methods DS+CG, ILUT+GMRES, ICT+CG, SMG, and SMG+CG,
respectively.

5.1. Kershaw Problem

This problem was run to a time slightly past steady state. Figures 3, 4, 5, and 6 show the
evolution of the radiation front from time zero to steady state. The transient profile shown
in Fig. 4 shows some mesh imprinting. The steady state profile however shows uniform
contours; a benefit of the finite element representation of the “div–grad” operator. For the
small, medium, and large Kershaw mesh problems, Figs. 7, 8, and 9 show iteration count
per cycle as a function of problem time in microseconds. In addition, in Fig. 10 we show
the time step in microseconds versus problem time, also in microseconds, for the medium
size problem. (For all of the tests, we show only the time step history for the medium
size problem, as this is representative of the other cases.) We have started the time step at
10−10µs. This time has been made artificially small so that the DSCG algorithm solves
the matrix in one iteration. As mentioned in Section 2.2.3, the code allows the time
step to grow by a factor of 1.2 per cycle unless a given accuracy or stability criterion is
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FIG. 7. Iteration counts for small Kershaw problem.

violated. The nature of this particular problem (i.e., the mesh) and its corresponding time
step controls imply that the matrix is diagonally dominant for a period of time beginning at
t = 10−10µs. As the radiation front moves through the distorted mesh, zones are becoming
more non-orthogonal, thus giving rise to large corner couplings. This effect in the matrix
means that off-diagonal elements are being populated with nontrivial values. At the same
time, as the radiation front is traveling through the CH foam, the time step is increasing.
This also leads off-diagonal elements in the matrix to become more important. The result of
these two effects can be seen when we compare iteration count versus time for the various
solvers. Although all the solvers scale with problem time, DSCG is by far the most sensitive.
When we look at iteration count for the medium and large Kershaw problems, we observe a
sensitivity (albeit weak) of both the ILUT+GMRES and ICT+CG solvers. By far, the SMG
and SMG+CG solvers show the best scalability as evidenced by the fact that their iteration
count as a function of time is almost independent of problem size.

Although iteration count is interesting, the bottom line is CPU time. Tables I, II, and III
give the CPU times for the parts of the simulation that we are interested in: total code
execution time, execution time for the radiation transport, and execution time for the linear
solvers. For the small Kershaw problem the ILUT+GMRES and ICT+CG are competitive
with the multigrid solvers (SMG and SMG+CG), each giving rise to a speedup of≈3.5
compared to DSCG. As the problem size is increased to 8000 and then 128,000 zones,
we observe several interesting features of the solvers (see Table IV). The ILUT+GMRES
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TABLE I

Runtimes for Small Kershaw Problema

DS+CG ILUT+GMRES ICT+CG SMG SMG+CG

Whole code 179.14 118.54 102.72 105.33 103.46
Radiation 156.06 93.75 78.60 82.26 80.18
Linear solve 105.70 40.87 30.33 31.56 29.12

a In seconds.

TABLE II

Runtimes for Medium Kershaw Problema

DS+CG ILUT+GMRES ICT+CG SMG SMG+CG

Whole code 1255.81 592.61 496.61 456.99 439.55
Radiation 1161.53 491.89 397.14 362.63 345.54
Linear solve 942.80 270.00 181.56 143.79 127.20

a In seconds.

FIG. 8. Iteration counts for medium Kershaw problem.
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FIG. 9. Iteration counts for large Kershaw problem.

seems to reach an asymptotic speedup value of≈4 relative to DSCG. The ICT+CG solver
is able to yield a speedup of a factor of≈11 by the time we reach problem sizes on the
Kershaw mesh of 128,000. But, by far, the biggest winners are SMG and SMG+CG. The
medium Kershaw mesh shows a slight separation in speedups between ICT+CG and the
SMG solvers. However, the strongest separation occurs for the large problem where both
SMG solvers beat ICT+CG by a factor of 2. This problem is evidence of the fact that run-
ning a scalable algorithm like SMG or SMG+CG, although expensive per iteration, more
than makes up for its overhead when large matrices (order≈100,000× 100,000) need to
be inverted.

TABLE III

Runtimes for Large Kershaw Problema

DS+CG ILUT+GMRES ICT+CG SMG SMG+CG

Whole code 103,294.39 31,096.20 15,124.77 10,932.68 10,430.30
Radiation 101,238.93 28,890.89 12,929.50 8,866.40 8,373.00
Linear solve 96,403.21 23,910.35 8,105.20 3,993.01 3,520.13

a In seconds.
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FIG. 10. Time steps for medium Kershaw problem.

5.2. Spherical Diffusion without Hydrodynamics

In this problem, the mesh is again fixed in time. This problem tests the linear solver
convergence rate on a mesh more typical of what appears in ICF calculations (at least
initially before instabilities and shocks set in and destroy the symmetry of the mesh).
Figures 11, 12, 13, and 14 show the evolution of the radiation temperature and mesh for the
problem. In Figs. 15, 16, and 17 we see iteration count as a function of time for the small,
medium, and large size meshes. Figure 18 shows the time step as a function of time. As
mentioned previously, the time step started at 10−6 µs and was allowed to increase by the
factor of 1.2 per cycle unless the fractional change in the radiation temperature exceeded
0.2. The time step increases, and if the accuracy criterion is violated, the reduced time step
is applied at the next cycle. We note some of the same features that were observed in the

TABLE IV

Speedup (over DS+CG) for Kershaw Problem

DS+CG ILUT+GMRES ICT+CG SMG SMG+CG

Small problem 1.00 2.59 3.48 3.35 3.63
Medium problem 1.00 3.43 5.09 6.56 7.41
Large problem 1.00 2.43 11.89 24.14 27.38
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FIG. 15. Iteration counts for small spherical diffusion problem.

Kershaw mesh: First, the obvious scaling of DSCG iteration count with both time step and
problem size, although the growth of iteration count with time step and problem size is not
as severe as that in the Kershaw case. The reason for this is, primarily, the smooth, almost
orthogonal nature of the mesh compared to the mesh in the Kershaw problem, which implies
a matrix more sparsely populated in off-diagonal entries. This explains, for example, why
the DSCG iteration count for this problem barely gets past 100 for the medium size problem
while for the Kershaw case, the iteration count was at several hundred. Tables V, VI, and
VII show the CPU time spent in the whole code, radiation package, and linear solver. In
addition, the relative speedups compared to DSCG are shown. The speedups for all solvers
relative to DSCG are impressive even for the small problems with a maximum speedup of

TABLE V

Runtimes for Small Spherical Diffusion Problema

DS+CG ILUT+GMRES ICT+CG SMG SMG+CG

Whole code 76.95 68.42 65.42 64.52 66.18
Radiation 59.09 50.47 47.36 46.23 48.18
Linear solve 21.22 11.78 8.92 5.93 7.95

a In seconds.
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FIG. 16. Iteration counts for medium spherical diffusion problem.

FIG. 17. Iteration counts for large spherical diffusion problem.



28 BALDWIN ET AL.

F
IG

.2
8.

Sn
ap

sh
ot

2.
F

IG
.2

7.
In

iti
al

ge
om

et
ry

fo
r

as
ym

m
et

ri
c

im
pl

os
io

n
pr

ob
le

m
.



LINEAR SOLVER COMPARISON 29

F
IG

.3
0.

Sn
ap

sh
ot

4.
F

IG
.2

9.
Sn

ap
sh

ot
3.



30 BALDWIN ET AL.

FIG. 18. Time step for medium spherical diffusion problem.

3.58 for the SMG solver (see Table VIII). For the medium mesh results, again SMG by
itself is the clear winner (speedup factor of 10.54), closely followed by SMG+CG (speedup
factor of 7.76), ICT+CG (speedup factor of 6.25), and finally ILUT+GMRES (speedup
factor of 4.58). Similarly to the Kershaw problem we again see SMG (either SMG alone
or as preconditioner to CG) a clear winner. The large mesh problem shows even more
impressive results, with SMG alone a clear winner at a 16.75 speedup over DSCG.

5.3. Radiatively Driven Symmetric Implosion

This problem tests the radiation–hydrodynamics on a rectilinear ALE mesh in a config-
uration relevant to ICF calculations. The important fact concerning this problem and the next

TABLE VI

Runtimes for Medium Spherical Diffusion Problema

DS+CG ILUT+GMRES ICT+CG SMG SMG+CG

Whole code 6074.63 1633.89 1509.51 1393.90 1445.30
Radiation 4761.21 1267.50 1141.31 1029.40 1079.23
Linear solve 1415.69 308.95 226.55 134.31 182.40

a In seconds.
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TABLE VII

Runtimes for Large Spherical Diffusion Problema

DS+CG ILUT+GMRES ICT+CG SMG SMG+CG

Whole code 10,4472.08 20,361.25 12,745.62 11,405.62 12,001.11
Radiation 8,2519.81 17,662.52 10,054.89 8,746.91 9,292.76
Linear solve 2,3395.36 10,146.93 2,704.00 1,397.07 1,925.50

a In seconds.

problem is that the mesh is dynamic; it responds to material motion and relaxes when zone
distortion becomes too extreme. Figures 19, 20, 21, and 22 show time snapshots of the
radiation temperature and mesh for the medium size problem. The figures show the initial
300 eV He source, the subsequent ablation of the CH foam, and finally the compression
of the DT ice. Figures 23, 24, and 25 show the iteration count as a function of time for
all solvers. The DSCG again shows the most iterations, with the characteristic scaling of
iteration count with problem size and time step. For the small problem, the SMG shows the
next highest number of iterations to convergence followed by ILUT+GMRES, ICT+CG,
and SMG+CG (the last two show comparable iteration counts). For the medium and large
problems, we see the characteristic weak scaling of ILUT+GMRES and ICT+CG with
problem size and the SMG+CG scheme almost completely independent of problem size.
It is interesting to note that the SMG scheme, although algorithmically scalable, requires
approximately 100 iterations to converge over a large portion of the problem time. This
fact illustrates the utility of using SMG as a preconditioner for CG to give a more robust
algorithm overall.

One important feature of the time step in this type of problem (i.e., implosions), which
is different from the radiation-only cases discussed earlier, is the rapid decrease in the time
step due to the shrinking of zones (see Figs. 21 and 26).This time step drop is primarily
due to the Courant condition placed on the hydrodynamics. Tables IX, X, and XII show
the CPU time spent in the whole code, radiation package, and linear solver. In addition, the
relative speedups compared to DSCG are shown in Table XIII. What was surprising was
that the relative speedups, although significant, were not as large as those seen earlier in
the pure radiation diffusion problems. For example, for the small problem, the speedups
never exceeded a factor of 2 while for the large mesh problems the speedups did not quite
reach a factor of 10, for two reasons. One is the time step control coming from the explicit
hydrodynamics (i.e., Courant condition) and the other is the property of ALE to smooth out
distorted meshes. In fact, if allowed to do so, ALE would try to smooth out the Kershaw
mesh if the hydrodynamics were turned on. Lower time steps keep the matrix diagonally

TABLE VIII

Speedups for Spherical Diffusion Problem

DS+CG ILUT+GMRES ICT+CG SMG SMG+CG

Small problem 1.00 1.80 2.38 3.58 2.67
Medium problem 1.00 4.58 6.25 10.54 7.76
Large problem 1.00 2.31 8.65 16.75 12.15
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FIG. 23. Iteration counts for small symmetric implosion problem.

FIG. 24. Iteration counts for medium symmetric implosion problem.
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FIG. 25. Iteration counts for large symmetric implosion problem.

FIG. 26. Time steps for medium symmetric implosion problem.
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TABLE IX

Runtimes for Small Symmetric Implosion Problema

DS+CG ILUT+GMRES ICT+CG SMG SMG+CG

Whole code 191.52 162.52 173.47 199.92 167.39
Radiation 79.45 58.11 60.62 91.53 63.03
Linear solve 34.58 15.36 12.44 45.22 20.85

a In seconds.

TABLE X

Runtimes for Medium Symmetric Implosion Problema

DS+CG ILUT+GMRES ICT+CG SMG SMG+CG

Whole code 18,044.61 9060.15 8289.29 14,447.06 9519.38
Radiation 13,397.81 4365.24 3380.86 9,761.04 4662.40
Linear solve 11,415.53 2301.53 1251.66 7,754.48 2571.45

a In seconds.

TABLE XI

Estimated Runtimes for Medium Symmetric Implosion Problem with 50 Groupsa

DS+CG ILUT+GMRES ICT+CG SMG SMG+CG

Whole code 674,547 222,945 173,959 492,736 237,957
Radiation 669,900 218,250 169,050 488,050 233,100

a In seconds.

TABLE XII

Runtimes for Large Symmetric Implosion Problema

DS+CG ILUT+GMRES ICT+CG SMG SMG+CG

Whole code 268,261.96 195,932.93 182,955.08 225,516.22 199,480.29
Radiation 185,486.13 100,980.08 76,225.40 128,005.89 89,666.50
Linear solve 149,820.31 58,636.32 29,410.26 85,417.22 41,950.78

a In seconds.

TABLE XIII

Speedups for Symmetric Implosion Problem

DS+CG ILUT+GMRES ICT+CG SMG SMG+CG

Small problem 1.00 2.25 2.78 0.76 1.65
Medium problem 1.00 4.96 9.12 1.47 4.44
Large problem 1.00 2.56 5.09 1.75 3.57
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dominant and a smooth mesh, as discussed earlier, means smaller corner couplings and a
more sparsely populated matrix. These two effects combine to make a matrix that is easier
to invert than that in the Kershaw case and a matrix that is more diagonally dominant than
the spherical diffusion without hydrodynamics. The latter fact is due to the rectilinear nature
of the mesh, which keeps the corner coupling terms small.

What is a little misleading when one looks at overall code CPU time is the fact that
hydrodynamics looks like a bottleneck to overall code performance, at least as far as the
linear solvers are concerned. It should be stressed again that these calculations were done
for one frequency group. By using one group, we assume that all spectral information,
including opacities, is averaged over the group. In particular, the diffusion coefficient
in Eq. (4) is inversely proportional to the Rosseland opacity, which tends to give more
weight to the high energy contributions of a full multigroup calculation. Note that the high
energy regime yields the lowest opacities, and that the off-diagonal matrix elements are
proportional to1t/σ (with σ the opacity). Thus, we see that for higher energy groups
the off-diagonal entries can be large, while for the same zone, but lower energy group,
these terms can be small. Therefore, our single group calculation is in some sense an
average, although weighted more heavily toward the high energy group side. With the
above remarks, a lower estimate for a 50 energy group calculation on the medium sym-
metric implosion problem can be obtained by multiplying the radiation timings in Ta-
ble X by 50. This is illustrated in Table XI. As one can observe in the table, this esti-
mated multigroup calculation illustrates the fact that radiation diffusion in fact dominates
the overall CPU time of the code. The importance, therefore, of any speedup of a fac-
tor of 2 or more is that it can mean large savings in CPU time for a multigroup calcu-
lation.

5.4. Radiatively Driven Asymmetric Implosion

This problem tests the radiation–hydrodynamics on an ALE mesh in a spherical geometry
with a nonsymmetric compression of the DT fuel. Although not particularly realistic (one
would not design a capsule with this much asymmetry), this problem tests the linear solvers
on a mesh which is distorted both in radial and angular directions. Figures 27, 28, 29, and 30
show time snapshots of the pressure in megabars and the mesh. The figures show the initial
300 eV He source, the subsequent ablation of the CH foam, and finally the compression
of the DT ice. Note that the compression does not satisfy spherical symmetry. Figures 31,
32, and 33 show the iteration count as a function of time for all solvers. The DSCG again
shows the most iterations, with the characteristic scaling of iteration count with problem
size and time step. For the small problem, the SMG and ILUT+GMRES show the next
highest number of iterations to convergence followed by SMG+CG and ICT+CG. For the
medium problem, we see the characteristic weak scaling of ILUT+GMRES and ICT+CG
with problem size and the SMG schemes almost completely independent of problem size.
The large problem iteration count versus time shows the characteristic scalings with time
step and problem size. We see that both SMG and SMG+CG are algorithmically scalable,
although the more robust MC+CG has smaller iteration counts. Again, we see a limit to
the time step growth due primarily to the Courant condition placed on the hydrodynamics
(Fig. 34). Tables XIV, XV, and XVI show the CPU time spent in the whole code, radiation
package, and linear solver. In addition, the relative speedups compared to DSCG are shown
in Table XVII. The results are similar to those of the radiatively driven symmetric implosion.



FIG. 31. Iteration counts for small asymmetric implosion problem.

FIG. 32. Iteration counts for medium asymmetric implosion problem.

36
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TABLE XIV

Runtimes for Small Asymmetric Implosion Problema

DS+CG ILUT+GMRES ICT+CG SMG SMG+CG

Whole code 311.58 249.89 249.12 251.54 250.62
Radiation 47.63 31.12 30.66 32.37 31.82
Linear solve 23.68 7.18 5.73 7.51 6.90

a In seconds.

TABLE XV

Runtimes for Medium Asymmetric Implosion Problema

DS+CG ILUT+GMRES ICT+CG SMG SMG+CG

Whole code 5043.90 4126.60 4532.59 4385.09 4102.50
Radiation 810.44 324.74 277.17 259.27 283.96
Linear solve 600.55 112.16 67.11 52.16 76.76

a In seconds.

FIG. 33. Iteration counts for large asymmetric implosion problem.
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TABLE XVI

Runtimes for Large Asymmetric Implosion Problema

DS+CG ILUT+GMRES ICT+CG SMG SMG+CG

Whole code 445,876.04 1,165,554.15 1,150,199.61 0.0 1,102,108.65
Radiation 194,675.51 174,912.03 105,895.58 0.0 75,831.09
Linear solve 185,606.67 122,919.69 31,889.33 0.0 23,107.11

a In seconds.

TABLE XVII

Speedup (over DS+CG) for Asymmetric Implosion Problem

DS+CG ILUT+GMRES ICT+CG SMG SMG+CG

Small problem 1.00 3.30 4.13 3.15 3.43
Medium problem 1.00 5.35 8.95 11.51 7.82
Large problem 1.00 1.51 5.82 0.00 8.03

FIG. 34. Time steps for medium asymmetric implosion problem.
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That is, the results are not quite as impressive as Kershaw’s for the same reasons mentioned
in Section 5.3. However, the results are better than those of the symmetric implosion on
a rectilinear ALE mesh. The reason for this is that the highly asymmetric nature of the
implosion is causing the mesh to distort, giving rise to a matrix with a larger number of
corner coupling terms. Note that again it is ICT+CG beating multigrid, albeit weakly for
the small, medium, and large problems.

We repeat the comments of Section 5.3 for emphasis. These calculations were done for
one group, and a multigroup calculation would require that a factor of the number of groups
be applied to the CPU time spent in the linear solver. Therefore, a multigroup calculation
with more than 10 groups would in fact show that radiation diffusion dominates the overall
CPU time of the code. The importance, therefore, of any speedup of a factor of 2 or more
is that it can mean large savings in CPU time for a multigroup calculation.

6. CONCLUSIONS

Computer codes containing both hydrodynamics and radiation play a central role in
simulating both astrophysical and inertial confinement fusion (ICF) phenomena. A crucial
aspect of these codes is that they require an implicit solution of the radiation diffusion
equations. We have shown in this paper the results of a comparison of five different lin-
ear solvers (diagonally scaled conjugate gradient (DSCG), GMRES with incomplete LU
preconditioning (ILUT+GMRES), conjugate gradient with incomplete Cholesky precon-
ditioning (ICT+CG), multigrid (SMG), and multigrid-preconditioned conjugate gradient
(SMG+CG)) over a range of complex radiation and radiation–hydrodynamics problems,
and over a range of problem sizes. The importance of scalable linear solvers is clearly man-
ifest when timing comparisons are performed between DSCG, ILUT+GMRES, ICT+CG,
and SMG or SMG+CG for pure radiation flow problems. The large size pure radiation flow
problems show a speedup factor of≈30 when SMG or SMG+CG is compared to DSCG.
The timing differences between the linear solvers become all the more important when
multigroup calculations are performed. For problems involving radiation–hydrodynamic
flows, the situation is more complex. The results of our scalability study clearly show the
inadequacies of DSCG as both problem size and time step grow for these types of prob-
lems. However, ICT+CG is comparable to and even slightly better than SMG or SMG+CG.
For the large symmetric and nonsymmetric radiatively driven implosions, ICT+CG, SMG,
and SMG+CG all show speedup factors of≈10 compared to DSCG. This observation is
tied to several facts. In a multiphysics code such as the code discussed in this paper, time
step controls and mesh relaxation play an important role in determining the nature and
structure of the matrix. The performance figures presented here for the linear solvers are
in fact “integral” quantities. What we observe is a close correlation between time step, the
diagonal dominance of the matrix, and the subsequent iteration count of the linear solver.
Since the problems presented in this study all start at a relatively small time step, DSCG
beats all solvers up to a point where DSCG is taking≈100 iterations to converge. At this
point, ILUT+GMRES, ICT+CG, SMG, and SMG+CG all become cost effective and out-
perform DSCG. For a large enough time step, SMG and SMG+CG beat all solvers. This
is what we observe in the Kershaw and spherical diffusion problems. However, in cases
where hydrodynamic flows and time scales are involved, the code may lower the time step
due to converging shocks, thus making the matrix more diagonally dominant and thereby
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making it easier for ILUT+GMRES or ICT+CG to solve than either SMG or SMG+CG.
This behavior is observed in the implosion problems. The above discussion leads to the fact
that a code with some measure of adaptivity with regard to linear solver choice will run
optimally. How and when this choice is to be made in a radiation–hydrodynamics code is
an interesting issue and we leave this topic to future discussion.
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